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Abstract

We propose a geometrical approach to the problem of integrability of Hamiltonian systems of low
dimensions using the Hamilton–Jacobi method of separation of variables, based on the method of
moving frames. As an illustration we present a complete classification of all separable Hamiltonian
systems defined in two-dimensional Riemannian manifolds of arbitrary curvature and a criterion for
separability. Connections to bi-Hamiltonian theory are also found. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

We are concerned with a general Hamiltonian system defined by the Hamiltonian function
H0:

H0 = 1
2g

ij(q)pipj + V (q), i, j = 1, . . . , n. (1.1)

This implies that the Hamiltonian vector field XH0 corresponding to (1.1) is defined with
respect to the canonical symplectic structure �0 = ∑n

i=1dpi ∧ dqi , or Poisson bi-vector
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P0 = ∑n
i=1∂i ∧ ∂i in the usual way:

XH0 = [P0, H0]. (1.2)

Here and below, unless otherwise indicated, [, ] denotes the Schouten bracket [1] which
generalizes the usual Lie bracket of vector fields and ∂i = ∂/∂qi , ∂i = ∂/∂pi . The quantities
gij, i, j = 1, . . . , n represent a (2, 0)metric tensor g. Thus, in addition to being defined in a
2n-dimensional symplectic (Poisson) manifold (M,�0)((M,P0)) the system (1.1) is also
defined in an n-dimensional pseudo-Riemannian manifold (M̃, g), where M is obviously
the cotangent bundle of M̃: M = T M̃∗. Hence, the (qi, pi) are the canonical coordinates
in T M̃∗. Conceivably, this arrangement provides a rich geometrical background for the
study of the Hamiltonian system (1.1). A fundamental question is whether the system
(1.1) is completely or Liouville integrable, or, in other words, whether the system (1.1)
possesses n functionally independent first integrals in involution with respect to the Poisson
bracket defined by �0 (or P0). If the answer is positive, then according to the celebrated
Arnol’d–Liouville theorem the Hamiltonian system (1.1) can be integrated by quadratures
[2].

In spite of the recent development of methods and techniques of complete integrablity that
have been invented in the last three decades (i.e., the method of Lax pairs, the bi-Hamiltonian
method, etc.), the classical 19th century approach to complete integrability via the Hamilton–
Jacobi method of separation of variables is being revived. One of the main impetuses for
the renewed interest in this method was Carter’s discovery that the geodesic equations in
the Kerr black hole space–time can be integrated by separation of variables [3]. Remark-
ably, in the course of the last 10 years, this classical method has been effectively linked
with the method of the Lax representation and the bi-Hamiltonian method, thus leading to
new theories in the area of integrable Hamiltonian systems (see [4,5], respectively, and the
relevant references therein).

The key idea behind the method of separation of variables is to seek a set of special coor-
dinates q := (q1, . . . , qn) in which the corresponding Hamilton–Jacobi partial differential
equation

1
2g

ij∂iW∂jW + V = E (1.3)

admits a complete integral of the form

W(q, c) = W1(q
1, c)+ · · · +Wn(qn, c), (1.4)

where c = (c1, . . . , cn) are the constants of integration. These constants are the n first
integrals in involution with respect to �0 (or P0) that guarantee the complete integrability
of (1.1). A complete integral W can be interpreted as an n-dimensional Lagrangian sub-
manifold inM lying on the level surfaceH0 = const. The coordinates (q1, . . . , qn) in (1.4)
are called separable coordinates. Moreover, if the metric g of (1.1) is diagonal in these
coordinates, they are also said to be orthogonal and the system defined by the Hamiltonian
(1.1) is said to be orthogonally separable. In what follows, we concentrate our attention
on this type of separable Hamiltonian systems. We note that the orthogonal case has been



A.T. Bruce et al. / Journal of Geometry and Physics 39 (2001) 301–322 303

extensively studied in the past in numerous articles by such famous scholars as Dall’Acqua,
Eisenhart, Levi-Civita, Ricci, Stäckel and others. Major advances in the area have been
achieved in recent years by Benenti, Kalnins and Miller, Shapovalov, as well as many
others. For a complete list of references see [6,7]. The non-orthogonal case has also
received much attention [6].

The main objective of this paper is to combine the theory of the orthogonally separa-
ble Hamiltonian systems and the method of moving frames. The method has been exten-
sively studied and successfully applied under different names (for instance, “the method of
quasi-coordinates”, “. . . non-coordinate basis”, “. . . orthogonal ennuples”) in such areas
of mathematics and physics as differential geometry, general relativity and theory of Lie
groups. Introduced by Darboux and developed by Cartan, the method has been chiefly used
in two cases: As an alternative method to the classical tensor calculus to avoid, in Cartan’s
words [8], the “debauch d’indices” and as an effective tool to study geometrical invariants of
submanifolds under the action of transformation Lie groups. We refer the interested reader
to a recent review by Olver [10] where the latest advances and a complete list of references
pertinent to the latter case can be found. In the present work, we are mainly concerned
with the former case, when the application of the moving frames method can significantly
alleviate the complications of dealing with tensorial geometrical quantities, in this paper,
defined in a Riemannian manifold (M̃, g). We note that an equivalent version of the method
of moving frames based on the frame of vectors, unlike Cartan’s approach via co-vectors,
was effectively used by Eisenhart [9].

The essence of the method of moving frames can be briefly described as follows. In a
given n-dimensional pseudo-Riemannian manifold (M̃, g) at each point p ∈ M̃ we replace
for the natural basis of the cotangent space T M̃∗

p: (dq1, . . . , dqn) arising from a coordinate

system (q1, . . . , qn) by a basis of n pointwise linearly independent one-forms (co-vectors)
E1, . . . , En ∈ T M̃∗

p, that can be adapted to the geometric situation. In the considerations
that follow the natural choice is that in which the metric tensor g takes its algebraic canonical
form. In other words, with respect to the basis Ea, a = 1, . . . , n, we have

gab = diag(1, . . . , 1,−1, . . . ,−1). (1.5)

The co-frame of one-formsE1, . . . , En is said to be rigid in this case. One can now proceed to
study the relations between the one-formsEa ∈ T M̃∗

p, their exterior derivatives dEa and the

dual basis (E1, . . . , En) of the tangent spaceT M̃p independently of local coordinates. Thus,
we can consider an open set A 	 p and (orthonormal) moving co-frame E1, E2, . . . , En

of one-forms defined in A for which the metric tensor g takes the form (1.5). We note that
the elements of the moving co-frame Ea and their counterparts Ea are connected with the
natural basis associated to local coordinates (q1, . . . , qn) about p ∈ A as follows:

Ea = hai dqi, Ea = hai ∂
∂qi
. (1.6)

The structure functions Ccab are defined by

[Ea,Eb] = CcabEc or dEa = − 1
2C

a
bcE

b ∧ Ec. (1.7)
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Now by (1.6) Ccab = hci (ha
jhb,j

i − hb
jha,j

i), a, b, c, i, j = 1, . . . , n. Here and
below, i denotes the usual partial derivative with respect to the ith coordinate. We introduce
the connection coefficients Γ corresponding to the Levi-Civita connection ∇ associated to
gab as follows:

∇EaEb = Γab
cEc, ∇EcEb = −Γcd

bEd.

The vanishing of the torsion tensor of ∇ is expressed by

Γbc
a − Γcb

a − Cabc = 0, (1.8)

while the curvature tensor of ∇ is given by

Rabcd = EcΓdb
a + Γdb

eΓce
a − EdΓcb

a − Γcb
eΓde

a − CecdΓeb
a. (1.9)

We now define a one-form valued matrix ωab called the connection one-form by

ωab := Γcb
aEc. (1.10)

Further, we define

ωab := gacω
c
b.

On account of the above connection one-forms, ωab are obviously skew-symmetric. The
condition (1.8) and the definition (1.9) may be expressed in the language of differential
forms as

dEa + ωab ∧ Eb = 0, (1.11)

and

dωab + ωac ∧ ωcb = Θab , (1.12)

where ∧ is exterior multiplication, d the exterior derivative and Θab := 1
2R

a
bcdE

c ∧ Ed the
curvature two-form. Taking the exterior derivative of (1.11) and (1.12) yields the first and
second Bianchi identities, respectively

Θab ∧ Eb = 0, (1.13)

and

dΘab + ωac ∧Θcb −Θac ∧ ωcb = 0. (1.14)

Finally, the equations satisfied by a valence two, symmetric, covariant Killing tensor K can
be written in frame components as

K(ab;c) = 0, (1.15)

where ; denotes the covariant derivative defined by

Kab;c := EcKab −KdbΓca
d −KadΓcb

d . (1.16)

This is all the geometric machinery that we need in the forthcoming sections to study
integrability of Hamiltonian systems by the method of separation of variables.
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2. Orthogonal separability

As we mentioned in Section 1, the question of whether the Hamiltonian system defined
by (1.1) is orthogonally separable has a long history.

It was Stäckel who first found in 1893 the necessary and sufficient conditions for the
system (1.1) to be orthogonally separable [11]. In spite of their rather complicated form
these fundamental conditions are still being used today by many mathematicians to study
orthogonal separability.

Levi-Civita [12] established a (local) criterion of separability (not necessarily orthogonal)
of the Hamilton–Jacobi equation associated with a general Hamiltonian system defined by
(1.1) in local coordinates (q1, . . . , qn;p1, . . . , pn) consisting of the 1/2n(n− 1) equations

∂i∂jH∂iH∂jH − ∂i∂jH∂iH∂jH + ∂i∂jH∂iH∂jH − ∂i∂jH∂iH∂jH = 0. (2.1)

The next breakthrough was by Eisenhart [13] who presented in turn necessary and sufficient
conditions for a Hamiltonian system defined by the geodesic Hamiltonian

Hg = 1
2g

ijpipj (2.2)

to be of the Stäckel type and thus orthogonally integrable. The result was based on the fact
that thenfirst integrals in involution (including the Hamiltonian) are necessarily quadratic in
momenta, when the system defined by (2.2) is considered in the natural position–momenta
coordinates. Moreover, the involution of any of these n− 1 first integrals F1, . . . , Fn−1:

Fr := 1
2K

ij
r pipj , r = 1, . . . , n− 1

with the Hamiltonian (2.2):

{Hg, Fr} = 0, r = 1, . . . , n− 1

entails the Killing tensor equation

[g,Kr ] = 0, r = 1, . . . , n− 1,

which is equivalent to

Kr(ab;c) = 0, r = 1, . . . , n− 1,

where the indices of K1, . . . ,Kn−1 have been lowered. Hence, the first integrals F1, . . . ,

Fn−1 are defined by the n− 1 valence two Killing tensors K1, . . . ,Kn−1 that share, in view
of Eisenhart’s result, certain geometrical properties. In particular, they must possess the
same eigenvectors and these eigenvectors are normal, which means that each eigenvector
is normal to an (n− 1)-dimensional hypersurface.

Kalnins and Miller [14] have further improved the results of Eisenhart. In particular,
they have studied the n-dimensional Abelian Lie algebra of Killing tensors of order 2,
K̃1, . . . , K̃n, where K̃1 = g, . . . , K̃n = Kn−1 in the notation above. Indeed, we note that the
Schouten bracket satisfies the Jacobi identity in the space of two-contravarant tensors (sym-
metric or otherwise). Moreover, they concluded that every Killing tensor K̃i , i = 2, . . . , n
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that is linearly independent of g = K̃1 and satisfies the properties of the main Theorem 6
(see [14]) defines (locally) a separable coordinate system for the Hamilton–Jacobi equa-
tion (1.3) on (M̃, g), and conversely, every separable coordinate system arises in this way.
We note, however, that the complications arising from dealing with the n Killing tensors
(including the metric) connected via certain algebraic and differential conditions makes this
result difficult to apply.

Finally, Benenti [6,15] generalized the results above and obtained a characterization
of orthogonal separability in terms of a single Killing tensor. His result is the following
theorem.

Theorem 2.1 (Benenti). A Hamiltonian system defined by (1.1) is orthogonally separable
if and only if there exists a valence two Killing tensor K with pointwise simple and real
eigenvalues, orthogonally integrable eigenvectors and such that d(K̂ dV ) = 0, where the
linear operator K̂ is given by K̂ := Kg (or in the index form K̂ij := Ki#g#j ).

Remark 2.2. We note that starting with one K that satisfies the conditions of Theorem 2.1,
one can reconstruct the n-dimensional Abelian Lie algebra of Killing tensors (including the
metric) of Theorem 6 in [14] by either finding the sets of separable coordinates or using
the intrinsic iterative process described in [16], which does not require having separable
coordinates. Conversely, having then-dimensional Abelian Lie algebra, we can easily obtain
the Killing tensor K̂ of Theorem 2.1 by considering the total sum of its elements. Another
way to see this is the following: The Killing equation (3.2) for K̂ is equivalent to a system of
n linear partial differential equations, the general solution of which naturally depends on n
constants of integration, where in turn can be viewed as the dimension of the corresponding
Abelian Lie algebra of Killing tensors. Further, the Killing tensor K does not define a single
set of separable coordinates, for example, by varying its eigenvalues (i.e., intrinsic invariants)
or otherwise [17], we can extract all the sets of orthogonally separable coordinates for a
given Hamiltonian system defined by (1.1).

Remark 2.3. The statement of Theorem 2.1 implies that there exists an additional first
integral quadratic in momenta (say):

F(q,p) = 1
2K

ij(q)pipj + U(q), (2.3)

where the matrixK ij is that of K. The involutiveness {H0, F } = 0 yields the Killing equation
[g,K] = 0, and the condition d(K̂ dV ) = 0 (which entails locally that dU = K̂ dV ).

Theorem 2.1 offers the advantage of working with a single geometrical quantity instead
of n such quantities as in [14]. However, in general it is still very difficult to check whether
or not a given Killing tensor K has normal eigenvectors. This is a rather non-trivial task
even in three-dimensional pseudo-Riemannian manifolds (M̃, g). The main difficulty is
the computational effort required by the straightforward approach. To solve the Killing
equation in this case in given position–momenta coordinates yields six functions (i.e.,
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K11,K22,K33,K12,K23,K13) depending upon 20 constants of integration that represent
the dimension of the space of (2, 0) Killing tensors in R3 (see [18–20]). Conceivably, for
n = 4, where n = dim M̃ the problem of finding the normal eigenvectors of K is practically
insurmountable without employing computer algebra.

Therefore, in this paper, we propose the use of the moving frame approach where the
frame vectors are chosen to be a set of suitably normalized eigenvectors of K. It appears
that the method not only results in a significant algebraic simplification, but also allows one
to consider the problem in a much more general setting, namely without any restrictions at
all on the curvature of the pseudo-Riemannian manifold (M̃, g).

To demonstrate how the method works and give a flavor of its applications, we begin by
proving the following criterion for orthogonal separability in Cartesian coordinates.

Theorem 2.4. The Hamiltonian system (1.1) is orthogonally separable with respect to
Cartesian coordinates iff the associated pseudo-Riemannian manifold (M̃, g) admits a
valence two covariant Killing tensor K with pointwise simple eigenvalues and vanishing
Nijenhuis tensor NK̂.

Proof. Consider aC∞ pseudo-Riemannian manifold (M̃, g) associated to the Hamiltonian
(1.1) which possesses a symmetricC∞ tensor field K of type (0, 2). The eigenvalue equation

KijE
j = λgijE

j (2.4)

admits n pointwise simple eigenvalues λ1, . . . , λn. We note that since (M̃, g) is the Rie-
mannian eigenvalues are necessarily real. Let E1, . . . , En be a set of eigenvectors of K
corresponding to the eigenvalues λ1, . . . , λn. It can be shown that the eigenvectors are real,
mutually orthogonal and that none of them is a null vector. Thus, the eigenvectors can be
normalized such that

g(Ea,Ea) = 1. (2.5)

The above set of eigenvalues is uniquely determined up to sign.
Since g and K are C∞ tensor fields, and the operations of solving for the eigenvalues

and eigenvectors and normalizing the eigenvectors are rational operations it follows that the
eigenvectorsE1, . . . , En define a set of C∞ pointwise linearly independent vector fields on
some open set A ⊂ M̃ . Hence, we may choose these vectors as a rigid moving frame on A
with respect to which the components of g and K are given by

gab = diag(1, . . . , 1), (2.6)

and

Kab = diag(λ1, . . . , λn). (2.7)

It follows that the metric tensor has the form

ds2 = (dx1)2 + · · · + (dxn)2. (2.8)
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A rigid co-frame can thus be chosen as follows:

E1 = dx1, . . . , En = dxn

with corresponding dual frame being

E1 = ∂i, . . . , ∂n. (2.9)

It is obvious that the frame vector fields are orthogonally integrable. Consider now the
(0, 2) tensor K, the components of which in the above co-frame are given by

Kab = diag(λ1, . . . , λn) (2.10)

with λa are constants satisfying λa �= λb for all a, b = 1, . . . , n, a �= b. It is clear that
Ea is an eigenvector corresponding to the eigenvalue λa for each a = 1, . . . , n. Since the
connection coefficients for the frame (2.9) are zero, Eq. (1.16) has the form

Kab;c = ∂cKab.

It is thus easy to verify that the tensor (2.10) satisfies the Killing equation (1.15). We
conclude that the tensor defined by (2.10) is the Killing tensor, the existence of which is
guaranteed by Theorem 1.1. It follows from (2.8) and (2.10) that

K̂ = diag(λ1, . . . , λn), (2.11)

and that K̂ has a trivially vanishing Nijenhuis tensor [21]. This fact may be established from
the following expression of NK̂ in local coordinates:

Ni
K̂jk

= ∂#BikB#j − ∂#BijB#k + ∂kB#jBi# − ∂jB#kBi# = 0, (2.12)

where i, j, k = 1, . . . , n. Note that Ni
K̂jk

= −Ni
B̂kj

.

Let K be a (0, 2)Killing tensor with pointwise simple and real eigenvalues and vanishing
Nijenhuis tensor. In the rigid moving frame of eigenvectors E1, . . . , En of K the condition
(2.12) reads

NK̂(Ea,Eb) = (K̂ − λa)(K̂ − λb)CcabEc + (λa−λb)(Ea(λb)Eb + Eb(λa)Ea) = 0,

(2.13)

and taking into account (2.11) can be decomposed into the following system of equations:

Ccab = 0, a, b, c are distinct, (2.14)

Ea(λb)(λa − λb) = 0, a, b are distinct. (2.15)

Concurrently, the Killing equation (1.15) for K with lower indices decomposes as follows:

K(aa;a) = 0 ⇔ EaKaa = 0 n equations, (2.16)

K(aa;b) = 0 ⇔ Eb(λa) = 2Γaab(λb − λa) 2

(
n

2

)
equations, (2.17)
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and

K(ab;c) = 0

(
n

3

)
equations, (2.18)

where a, b and c are distinct. Therefore, in view of the above since λ1, . . . , λn are distinct,
the connection coefficients Γ abc vanish. Hence, the Riemannian space (M̃, g) is flat and the
eigenvalues of K are constants. This implies that the Hamiltonian system defined by (1.1)
is separable only with respect to Cartesian coordinates. �

Remark 2.5. It is instructive to contrast the above result with an analogous result for
Poisson–Nijenhuis manifolds. Recall that in the case of two compatible Poisson bi-vectors
P1 and P2, the linear operator A := P2P−1

1 with the components Aij = P im
2 P

−1
1mj (if P1 is

non-degenerate) has a vanishing Nijenhuis tensor NA = 0 and vice versa (see, for example,
[22–24]). We observe that the Killing tensor equation [g,K] = 0 satisfied by the two Killing
tensors g and K resembles the condition [P1,P2] = 0 of Compatibility of the two Poisson
bi-vectors in the theory of bi-Hamiltonian systems. However, as may be seen from the
proof of Theorem 2.4, the Killing tensor equation is not equivalent to the vanishing of the
Nijenhuis tensor of the corresponding linear operator K̂ := Kg. Moreover, as we have just
seen, the vanishing of the tensor NK̂ appears to be a very restrictive additional condition

on K̂.

3. Separability in two-dimensional Riemannian manifolds

We start our considerations in an arbitrary Riemannian manifold (M̃, g), dim M̃ = 2
defined by (1.1) making a priori no assumptions on its curvature. Using the techniques
presented in the previous two sections, we introduce a rigid moving frame of co-vectors
E1, E2 with respect to which the metric g and Killing tensor K of Theorem 2.1 take the
following forms:

gab = δabE
a � Eb, (3.1)

Kab = λaδabE
a � Eb, (3.2)

where � is the symmetric tensor product and a, b = 1, 2 and λ1, λ2 along with the dual
vectorsE1, E2 are the eigenvalues and eigenvectors of K, respectively. In this case we have
two independent connection coefficients Γ112 and Γ212 and one component of the Riemann
curvature tensor R1212. For convenience we write α := Γ112 and β := Γ212. Then the
formulas (1.7), (1.9) and (1.16) become

[E1, E2] = −αE1 − βE2, (3.3)

dE1 = αE1 ∧ E2, dE2 = βE1 ∧ E2, (3.4)

R1212 = −E1β + E2α − α2 − β2, (3.5)
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E1λ1 = 0, E2λ1 = 2α(λ2 − λ1), E1λ2 = 2β(λ2 − λ1), E2λ2 = 0, (3.6)

where (1.8) has been used. Our next observation is that in a two-dimensional Riemannian
manifold the conditions of orthogonal integrability forE1 andE2,Ea ∧ dEa = 0, a = 1, 2
are automatically satisfied. Hence, by Frobenius’ theorem, there exist functions f, g, u and
v, such that

E1 = f du, E2 = g dv. (3.7)

We choose (u, v) as coordinates, while the functions f and g remain to be determined by the
conditions of the problem. Clearly, with respect to (u, v)we have α = α(u, v), β = β(u, v)
and the eigenvectors E1, E2 of K are given by

E1 = (f )−1∂u, E2 = (g)−1∂v. (3.8)

Substituting (3.7) into (3.4), yields

α = −(fg)−1∂uf, β = (fg)−1∂vg. (3.9)

Consider again the Hamiltonian function (1.1) in natural (position–momenta, say) coordi-
nates:

H = 1
2g

ijpipj + V.
In a rigid moving frame in view of the above, we have

H = 1
2g

abpapb + V, (3.10)

where gab = gijhai h
b
j and pa = ha

kpk , where hai is defined in (1.6) and V is a function
of u and v. Next, we apply the vector field [E1, E2] to λ1 and λ2 to obtain the following
integrability conditions:

E1α = −3αβ, (3.11)

E2β = 3αβ. (3.12)

Now it is natural to analyze the following three cases defined with respect to α and β.

CI α = β = 0 ⇔ λ1 and λ2 constant,

CII α = 0, β �= 0(α �= 0, β = 0)⇔ λ1 constant (λ2 constant),

CIII αβ �= 0 ⇔ λ1 and λ2 both non-constant.

This classification is intrinsic since the rigid moving frame we are using is defined up to a
sign. The general forms of the separable metric

ds2 = (E1)2 + (E2)2, (3.13)

and the corresponding Killing tensor K (3.2) will be derived in each case. Having found
the Killing tensor, we shall derive the form of the most general separable potential V (u, v)
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admitted by the original Hamiltonian (1.1). To accomplish this, we take into consideration
the condition d(B dV ) = 0 of Theorem 2.1, which may be written in terms of the moving
frames as

E1E2V + 3βE2V − 2αE1V = 0. (3.14)

Once the potential V is found, we derive the second first integral of the Hamiltonian system
defined by (1.1) given by F = Kabpapb + U or

F(u, v, p1, p2) = λ1p
2
1 + λ2p

2
2 + U(u, v) (3.15)

in the moving frame, by solving the equation dU = 2B dV . Writing this condition in the
moving frame, we immediately obtain the following system

E1U = 2λ1E1V, (3.16)

E2U = 2λ2E2V. (3.17)

3.1. Case I: α = β = 0

It follows immediately from (3.9) thatf = f (u) and g = g(v). Therefore,E1 = f (u) du,
E2 = g(v) dv, and the metric takes the form

ds2 = f 2(u) du2 + g2(u) dv2.

We observe that there exist coordinate transformations (u, v)→ (ũ, ṽ), such that

E1 = f (u) du = dũ, E2 = g(u) du = dũ, (3.18)

where

ũ =
∫
f (u) du, ṽ =

∫
g(v) dv.

The remaining coordinate freedom is

ũ = ū+ u0, ṽ = v̄ + v0.

Thus, for CI we have

E1 = du, E2 = dv, (3.19)

where the tildes have been dropped. Thus, the metric (3.13) has the form

ds2 = du2 + dv2. (3.20)

We conclude that the separable coordinates in this case are Cartesian. We also observe, by
(3.5), that R1212 = 0, in CI, which means that the case when both eigenvalues of K are
constant is compatible with only a flat two-dimensional Riemannian space. Now taking into
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account the above facts along with the Killing equation, we easily recover that λ1 = c1 and
λ2 = c2, where c1 and c2 are constant. Hence,

K = diag(c1, c2), (3.21)

and in view of (3.14), we have

V (u, v) = V1(u)+ V2(v). (3.22)

Similarly, by making use of (3.16) and (3.17), we find the corresponding U to be

U(u, v) = 2kV1(u)+ 2#V2(v). (3.23)

We conclude that a second first integralF that is functionally independent of the Hamiltonian
H is

F(u, v, pu, pv) = p2
v + 2V2(v). (3.24)

We note that the class of Hamiltonian systems just described has the properties of being
bi-Hamiltonian in the separable coordinates (u, v) with respect to the constant Poisson
bi-vectors P0 and P1:

P0 = ∂u ∧ ∂pu + ∂v ∧ ∂pv , P1 = ∂u ∧ ∂pu − ∂v ∧ ∂pv , (3.25)

and having a Lax representation defined by matrices L andM of the form

L =
(
L1 0
0 L2

)
, M =

(
M1 0
0 M2

)
, (3.26)

where

Li =




1√
2
pj 2wj

fi(wj )

wj
− 1√

2
pj


 , Mi = 1

2wj




0 0

d

dt

(
pj√

2

)
−2pj


 . (3.27)

Here i, j = 1, 2, i �= j , w1 = u, w2 = v and f1, f2 ∈ C1(R) are arbitrary functions. We
note that the separable coordinates (u, v) in this case are simply the Darboux–Nijenhuis
coordinates [25] defining the canonical bi-Hamiltonian structure (3.25). See [26] for more
details and illustrative examples.

3.2. Case II: α = 0, β �= 0(α �= 0, β = 0)

The condition α = 0 in (3.9) immediately yields f = f (u), and, by an appropriate
coordinate transformation, we may set f = 1. Similarly, we use (3.12) to conclude β =
β(u), which entails in turn after solving (3.12) that g = C(u)D(v), where C(u) and D(v)
are arbitrary functions. We may absorb D(v) by a further coordinate transformation to
obtain g = g(u). Hence, the metric in this case is given by

ds2 = du2 + g2(u) dv2, (3.28)
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where g(u) is an arbitrary function. To solve the Killing equation and find the corresponding
K, we observe that in view of the above β = ∂ug/g. Now Eqs. (3.6) transform into the
following system of partial differential equations

∂uλ1 = ∂vλ1 = ∂vλ2 = 0, ∂uλ2 = ∂ugg−1(λ2 − λ1). (3.29)

Solving for λ1 and λ2, we find λ1 = k, λ2 = #g2(u)+ k, where #, k are arbitrary constants.
Hence, the Killing tensor in this case takes the form:

K = diag(k, #g2(u)+ k) = kg + #K1, (3.30)

where K1 = diag(0, g2(u)) and g, K1 span the two-dimensional Abelian Lie algebra of
Killing tensors as in [4]. We note that, since the variable v is ignorable, the Killing tensor K1

is simply the square of the corresponding Killing vector corresponding to the first integral
linear in the momenta.

Remark 3.1. This observation illustrates the fact that Benenti’s approach is in fact equiva-
lent to the approach due to Eisenhart [13] and Kalnins and Miller [14]. In the most general
case the Killing tensor K of Theorem 2.1 is simply a linear combination of the n Killing
tensors (including the metric) g, . . . ,Kn−1 in [13,14].

Next, taking into account that α = 0 and f = 1, we solve Eq. (3.14) for V to obtain

V (u, v) = V1(u)+ V2(v)

g2(u)
, (3.31)

where V1 and V2 are arbitrary functions. It follows by (3.16) that

U(u, v) = 2kV1(u)+ 2#V2(v)+ 2kV2(v)

g2(u)
. (3.32)

Finally, substituting (3.31) and (3.32) into (3.15) and removing the expression for the Hamil-
tonian we find a second first integral F for this family of separable Hamiltonian systems
just described, namely

F(u, v, p1, p2) = kg2(u)p2
2 + #V1(u)+ 2#V2(v)+ kV2(v)

g2(u)
, (3.33)

or, in terms of the separable coordinates:

F(u, v, pu, pv) = c2p
2
v + c1V1(u)+ 2c2V2(v)+ c1V2(v)

g2(u)
. (3.34)

We note that (3.5) in this case becomes

R1212 = −∂u
(
∂ug

g

)
−

(
∂ug

g

)2

= −g
′′

g
, (3.35)

or, simply

g′′ + ag = 0, (3.36)
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where a(u) = R1212(u). The case α �= 0, β = 0 corresponds to the metric ds2 =
f 2(v) du2 + dv2, which can be obtained from (3.28) in an obvious way.

3.3. Case III: αβ �= 0

We begin by proving first that in this case the functions f and g may be assumed equal.
Eqs. (3.11) and (3.12) imply that

E1α = −E2β,

which, on account of (3.9), may be written as

∂u∂v

(
ln

(
f

g

))
= 0.

It follows ln(f/g) = G(u) + H(v), where G and H are arbitrary functions, from which
we obtain

f = g(u, v)C(u)D(v), (3.37)

where C(u) = eG(u) and D(v) = eH(v). After appropriate coordinate transformations
applied to the metric, we get

f (u, v) = g(u, v). (3.38)

We now proceed to determined the general form of the metric. In view of (3.38), either of
(3.11) and (3.12), yields

∂u∂vf
2(u, v) = 0.

Therefore,

f 2(u, v) = A(u)+ B(v), (3.39)

where A and B are arbitrary functions. It follows that the metric has the form

ds2 = (A(u)+ B(v))(du2 + dv2). (3.40)

Remark 3.2. We note immediately that the metric (3.40) is that of the well known Liouville
surface [27]. Hence, in this case the dynamics of (1.1) can be viewed as the motion of a
Liouville surface under the action of a conservative force with potential energy V (u, v).

We proceed to find the corresponding Killing tensor K. Substituting (3.9) along with
(3.39) into (3.6) leads to the following system of partial differential equations with respect
to λ1 and λ2:

∂uλ1(u, v) = ∂vλ2(u, v) = 0, ∂vλ1(u, v) = B ′(v)
A(u)+ B(v)(λ1(u, v)− λ2(u, v)),

∂uλ2(u, v) = A′(u)
A(u)+ B(v)(λ2(u, v)− λ1(u, v)). (3.41)
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Solving (3.41), we obtain λ1 = kB(v)+# and λ2 = −kA(u)+#, where k and # are arbitrary
constants. Thus

K = diag(kB(v)+ #,−kA(u)+ #) = #g + kK1, (3.42)

where K1 = diag(B(v),−A(u)) (see Remark 3.1). Eq. (3.14) for V (u, v) may be written
as

∂u∂v[(A(u)+ B(v))V (u, v)] = 0,

which has the solution

V (u, v) = V1(u)+ V2(v)

A(u)+ B(v) , (3.43)

where V1 and V2 are arbitrary functions. It follows that (3.16) and (3.17) may be solved to
obtain

U(u, v) = 2#V (u, v)+ 2k
B(v)V1(u)− A(u)V2(v)

A(u)+ B(v) . (3.44)

We conclude that the second first integral independent of H has the form

F(u, v, p1, p2) = B(v)p2
1 − A(u)p2

2 + 2

(
B(v)V1(u)− A(u)V2(v)

A(u)+ B(v)
)
. (3.45)

Noting that h1
1 = f−1, h2

2 = f−1, h1
2 = h2

1 = 0, we may rewrite (3.45) in terms of the
coordinates as

F(u, v, pu, pv) = B(v)(p2
u + 2V1(u))− A(u)(p2

v + 2V2(v))

A(u)+ B(v) . (3.46)

We note that the form of the Hamiltonian H (1.1) in the coordinates (u, v) becomes

H(u, v, pu, pv) = p2
u + p2

v

2(A(u)+ B(v)) + V1(u)+ V2(v)

A(u)+ B(v) . (3.47)

The forms (3.46) and (3.47) demonstrate that the Hamiltonian system under consideration is
a Liouville system [28] in the separable coordinates (u, v). Conversely, it is easy to see that
the Hamilton–Jacobi equation corresponding to (3.47) separates in the coordinates (u, v).
Indeed, in this case (1.3) takes the following form:

1

2(A(u)+ B(v)) ((∂uW)
2 + (∂vW)2 + 2(V1(u)+ V2(v))) = E.

Now, puttingW(u, v) = W1(u)+W(v), we find the complete integralW to be

W(u, v) =
∫ √

β − 2V1(u)+ EA(u) du+
∫ √

−β − 2V2(v)+ EB(v) dv.

DifferentiatingW with respect to β and E, we can find the solutions for specific choices of
A(u), B(v), V1(u) and V2(v). Hence, without imposing any restriction on the curvature of



316 A.T. Bruce et al. / Journal of Geometry and Physics 39 (2001) 301–322

the corresponding pseudo-Riemannian manifold we have proven the following criterion of
separability.

Theorem 3.3. The following conditions are equivalent.

1. The Riemannian manifold (M̃, g) defined by (3.48) admits a valence two Killing tensor
K with distinct eigenvalues;

2. There exist coordinates (u, v) with respect to which the metric takes the form (3.40) ;
3. The Hamiltonian system defined by the Hamiltonian

H = 1
2g

ij(q)pipj + V (q), i, j = 1, 2 (3.48)

in the Riemannian manifold (M̃, g) of an arbitrary curvature can be integrated by
separation of variables.

Remark 3.4. The (2) ⇔ (3) part of Theorem 3.3 was proven first in 1881 using local
coordinates by Morera [29], who also extracted the four separable systems of coordinates
in the Euclidean flat space (see below). The (1) ⇔ (3) part is simply a restatement of
Theorem 2.1 and (1) ⇔ (2) follows from the above considerations.

Having derived the explicit formula (3.46) for a second first integral F , we can now
investigate whether or not the Liouville system (3.47) admits a bi-Hamiltonian represen-
tation with respect to the coordinates (u, v). Recall that the bi-Hamiltonian property is
a combination of algebraic and differential conditions, which can be quite restrictive for
low-dimensional Hamiltonian systems. Indeed, it is easy to see that the symplectic form �1

corresponding to F : iXH�1 = −dF is given by

�1 = 2B(v) du ∧ dpu − 2A(u) dv ∧ dpv. (3.49)

Clearly, (3.49) satisfies the differential conditions d�1 = 0 and LXH (�1) = 0 iff A(u) =
B(v) = const. In this case �1 is equivalent to P1 in (3.25). Therefore, taking into account
the result of Theorem 1 in [26], we answer the question of whether there exists a second
Hamiltonian representation with respect to F by the following result.

Proposition 3.5. The Liouville system defined by (3.47) admits a bi-Hamiltonian represen-
tation in the separable coordinates (u, v) iff the coordinates are Cartesian.

Finally, we note that the formula (3.5) assumes in this case the following form.

R1212 = − 1

f

[
∂u

(
∂uf

f 2

)
+ ∂v

(
∂vf

f 2

)]
−

(
∂uf

f 2

)2

−
(
∂vf

f 2

)2

, (3.50)

where f 2(u, v) = A(u)+ B(v).
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4. Applications

We now apply the classifications of the previous section to Hamiltonian systems defined
in particular Riemannian spaces.

4.1. Two-dimensional Euclidean space E2

In this case R1212 = 0, which entails

E2α − E1β = α2 + β2.

Consider now the following three separable cases (SC), defined with respect to the functions
α and β.

SCI: α = β = 0.
In this case the separable coordinates are obviously Cartesian and R1212 = 0, is auto-

matically satisfied.
SCII: α = 0, β �= 0.
Solving Eq. (3.36) we obtain that the metric can be written as follows:

ds2 = du2 + u2 dv2, (4.1)

which we immediately recognize as the Euclidean metric in polar coordinates.
SCIII: αβ �= 0.
Employing (3.5) (αβ �= 0, R1212 = 0) to find the functions A(u) and B(v) defining the

formula for the metric of a Liouville surface, we arrive at the following equation.

(A(u)+ B(v))(A′′(u)+ B ′′(v) = (A′(u))2 + (B ′(v))2,

which after taking partial derivatives reduces to

A′′′(u)
A′(u)

+ B ′′′(v)
B ′(v)

= k2 (4.2)

for some constant k ≥ 0. Solving (4.2) separately for k = 0 and k �= 0 yields the metrics

ds2 = (u2 + v2)(du2 + dv2), (4.3)

and

ds2 = a2(cosh2(u)− cos2(v))(du2 + dv2), (4.4)

respectively, where a is a scaling parameter. We note that the expressions (4.3) and (4.4)
represent the Euclidean metric in parabolic and elliptic–hyperbolic coordinates, where a
represents half the distance between the focii. Hence, we have extracted the four separable
systems of coordinates in the Euclidean space by employing the method of moving frames.
The corresponding Killing tensors, second first integrals and potential functions can be
recovered by making use of the formulas derived in Section 3.
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4.2. Surfaces of rotation

A surface of rotation is the surface generated by the rotation of a plane curve C around
an axis in its plane. If C is parametrized by the equations ρ = ρ(u) and z = z(u), the
position vector of the surface of rotation is r = {ρ(u) cos v, ρ(u) sin v, z(u)}, where u is
the parameter of the curve C, ρ is the distance between a point on the surface and the axis
z of rotation and v is the angle of rotation, which is the ignorable (cyclic) coordinate. The
metric of the surface of rotation is

ds2 = ((ρ′)2 + (z′)2) du2 + ρ2 dv2. (4.5)

Clearly, the metric (4.5) can be reduced to the form (3.28) by an appropriate coordinate
transformation. Once the curvature R1212(u) is known, the function(s) g(u) and the corre-
sponding metric(s) may be recovered from (3.36) and vice versa. Consider an example. The
metric

ds2 = a2 du2 + #2
(

1 + a

#
cos u

)2
dv2 (4.6)

defines the surface of a two-dimensional torus T 2, where a and # are the radii of the rotating
and axial circles, respectively. We note that in this paper we do not consider global properties
of two-dimensional pseudo-Riemannian manifolds, hence here T 2 is not a topological
torus. Locally, the metric (4.6) yields one system of separable coordinates with g(u) =
#(1 + (a/#) cos(u/a), R1212 = cos(u/a)/(a#+ a cos(u/a)) and the other quantities as in
Case II of Section 3 corresponding to the given g(u).

4.3. Surfaces of constant curvature

In this section, we assume the curvature R1212 = εa2, where ε = ±1 and a > 0 is
constant. Let us consider again the two cases: α = 0, β �= 0 and αβ �= 0.

Case I: α = 0, β �= 0. In this case the coordinate v is ignorable (cyclic). Solving (3.36)
for a(v) = const, yields:

g(u) = c1 cos au + c2 sin au = c̃1 cos au + c̃2
1

a
sin u, ε = 1,

g(u) = c3 eau + c4 eau = c̃3 cosh au + c̃4
1

a
sinh au, ε = −1.

Now varying the constants of integration we recover four distinct solutions for g(u)
corresponding to the following metrics.

ds2 = 1

a
(du2 + sin au dv2), ε = 1, (4.7)

ds2 = du2 + cosh2au dv2, ε = −1, (4.8)

ds2 = du2 +
(

sinh au

a

)2

dv2, (4.9)
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ds2 = du2 + e−2au dv2. (4.10)

Using the explicit expression for the function g(u) above and the formulas (3.30), (3.31)
and (3.33) we can write down in each case the corresponding potentials, Killing tensors and
second first integrals.

Case II: αβ �= 0. Again, assume R1212 = εa2. Then (3.50) reads

(A+ B)(A′′ + B ′′)− (A′)2 − (B ′)2 = −2εa2(A+ B)3, (4.11)

where A = A(u) and B = B(v). Eq. (4.11) can be separated as follows:

A′′′

A′ + 12εa2A = −B
′′′

B ′ − 12εa2B = λ.

Hence, we arrive at the following two equations for A and B, respectively,

A′′′ + 12εa2AA′ = λA′, B ′′′ + 12εa2BB′ = −λB ′. (4.12)

Assuming λ �= 0 and solving (4.12) with respect to u and v, we get

±du = dA

(−4εa2A3 + λA2 + 2#A+ 2m)1/2
, (4.13)

±dv = dB

(−4εa2B3 − λB2 + 2#̃B + 2m̃)1/2
, (4.14)

where #, #̃,m and m̃ are the constants of integration. Substituting the corresponding expres-
sions for (A′)2 and (B ′)2 into (4.11), we easily find # = #̃ andm = −m̃. Next, substituting
(4.13) and (4.14) into (3.40), then factoring out −1/(4εa2) and changing the variables:
A→ Ã+ λ/12εa2, B → −B̃ − λ/12εa2, we arrive after dropping tildes at the following
metric:

ds2 = − 1

4εa2
(A− B)

(
dA

p3(A)
− dB

p3(B)

)
, (4.15)

where p3(x) = x3 + px + q with arbitrary coefficients p and q. Note that we have derived
the metric (4.15) without solving (4.13) and (4.14) for A and B, respectively. Comparing
the metrics (3.40) and (4.15) we see that the latter metric is not in the Liouville form and
so we cannot complete the analysis by deriving the corresponding first integrals, potentials
and Killing tensors. However, since the functions A and B and their derivatives in (4.13)
and (4.14) essentially parametrize appropriate elliptic curves, clearly it can be done by
expressing A and B in terms of the Weierstrass function ℘. Indeed, by appropriate linear
transformations Eqs. (4.13) and (4.14) can be transformed into the corresponding form of
the Weierstrass differential equation

(
d℘

dz

)2

= 4℘3 − g2℘ − g3,

thus leading to the following solutions for the functions A(u) and B(v), respectively:

A(u) = ℘(a√−εu+ c1;ω1, ω2)− λ, (4.16)
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B(v) = ℘(a√−εv + c2;ω1,−ω2)+ λ, (4.17)

where c1, c2, λ are arbitrary functions and ω1, ω2 define the periods of the meromorphic,
doubly periodic function ℘. Now we can use the expressions (4.16) and (4.17) and the
analysis of Section 3 to derive in each case the corresponding separable potential (formula
(3.43)), Killing tensor (formula (3.42)), as well as the second first integral (formula (3.45)).

Let x1, x2 and x3 be the roots of p3: p3(x) = (x − x1)(x − x2)(x − x3). Without loss of
generality we impose the conditionA > B. To extract all the metrics depending on different
choices of x1, x2 and x3, we impose the condition that the right-hand side of (4.15) must be
positive definite. When ε = 1 there is only one possibility for A and B for which (4.15) is
positive definite, while ε = −1 leads to six different possibilities:

x1 < B < x2 < A < x3, ε = 1, (4.18)

x1 < x2 < B < x3 < A, ε = −1, (4.19)

B < x1 < x2 < x3 < A, (4.20)

B < x3 < A, x1 = x̄2, (4.21)

x1 = x2 < B < x3 < A, (4.22)

B < x1 = x2 < x3 < A, (4.23)

B < x1 = x2 = x3 < A. (4.24)

We observe that these separable cases were first derived by Olevsky [30], while studying
separability of Laplace–Beltrami’s operator in the spaces of constant curvature. He used
Eisenhart’s (coordinate) approach to the problem. The moving frame method applied to
two-dimensional separable Hamiltonian systems yields the same results without considering
initially a particular system of coordinates. We note that the separable coordinates (A,B)
are essentially the eigenvalues of the Killing tensor K1 in (3.42).

5. Concluding remarks

The method of moving frames employed in this paper is apparently the first applica-
tion of the method to finite-dimensional Hamiltonian systems with a potential. We note
also that the conclusion about separability of the corresponding Hamilton–Jacobi equation
here follows directly from the integrability conditions for the Killing tensor equations. In
contrast, the earlier results due to Eisenhart [9] (where a version of this method adapted
to local coordinate was used to separate geodesic equation), rested on the Stäckel crite-
rion of separability. When combined with Benenti’s criterion of orthogonal separability of
the Hamiltonian system defined by (1.1) the method provides a powerful tool to classify
(locally) separable cases for Hamiltonian systems defined by (1.1) in pseudo-Riemannian
manifolds of arbitrary curvature. Admittedly, it can be used with the most benefit in the
spaces of low dimensions. As an illustration we have presented a comprehensive study of
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separability in two-dimensional Riemannian manifolds. Although the approach in this case
allows us mainly to recover known results, this work commences a program of studying
orthogonal separability in three- and four-dimensional pseudo-Riemannian manifolds. The
latter case is very important for investigating Hamiltonian systems of General Relativity.

The method can also be used to study super-separability [18] of (1.1), which is the
property of the potential V being compatible (i.e., satisfy d(B dV ) = 0) in more than one
separable system. Thus, we can determine the form of the super-separable potentials by
considering pairs of separable coordinate systems. Specifically, we impose the compati-
bility condition of both coordinate systems using the coordinate transformation between
them. For example, the potentials separable in Cartesian coordinates have the form (3.22).
Transforming (3.22) to polar coordinates, we get Ṽ (u, v) = V1(u cos v)+V2(u sin v). Now
impose the condition d(B dṼ ) = 0 in polar coordinates:

∂u(u
2∂vṼ ) = 0. (5.1)

Solving (5.1) and going back to Cartesian coordinates, we easily obtain

V (x, y) = #(x2 + y2)+ m

x2
+ n

y2
, (5.2)

where #,m and n are constants, which is the general potential separable in both Cartesian
and polar coordinates, first found by Friš et al. in [31], while studying (product) separability
of field equations. This procedure can be used in pseudo-Riemannian manifolds of arbitrary
curvature, once all separable coordinate systems of coordinates have been determined.

Finally, employing the method of moving frames has also allowed us to demonstrate the
equivalence between the Kalnins and Miller theory of orthogonal separability [14] and the
theory of Benenti [6]. As we have seen, the Killing tensor K defining the linear operator
B in Theorem 2.1 is in fact a linear combination of the n basic Killing tensors (including
the metric g) of Theorem 6 in [14]. (See Remark 3.1 and the formulas (3.21), (3.30) and
(3.42).)
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